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Increasing evidence indicates the importance of the tumor microenvironment, in particular cancer-associated fibroblasts, in

cancer development and progression. In our study, we developed a novel, visually based method to identify new immunohisto-

chemical signatures of these fibroblasts. The method employed a protein list based on 759 protein products of genes identi-

fied by RNA profiling from our previous study, comparing fibroblasts with differential growth-modulating effect on human

cancers cells, and their first neighbors in the human protein interactome. These 2,654 proteins were analyzed in the Human

Protein Atlas online database by comparing their immunohistochemical expression patterns in normal versus tumor-associated

fibroblasts. Twelve new proteins differentially expressed in cancer-associated fibroblasts were identified (DLG1, BHLHE40,

ROCK2, RAB31, AZI2, PKM2, ARHGAP31, ARHGAP26, ITCH, EGLN1, RNF19A and PLOD2), four of them can be connected to the

Rho kinase signaling pathway. They were further analyzed in several additional tumor stromata and revealed that the majority

showed congruence among the different tumors. Many of them were also positive in normal myofibroblast-like cells. The new

signatures can be useful in immunohistochemical analysis of different tumor stromata and may also give us an insight into

the pathways activated in them in their true in vivo context. The method itself could be used for other similar analysis to iden-

tify proteins expressed in other cell types in tumors and their surrounding microenvironment.

Recent advances have highlighted the importance of the tu-
mor microenvironment and its interaction with cancer cells
including the influence of cancer-associated fibroblasts
(CAFs).1 The normal microenvironment is believed to play a
restrictive role, capable of nipping incipient or disseminated
cancer cells in the bud. CAFs have often lost this capacity
and may even stimulate tumor growth.2–4 Using the in vitro
neighbor suppression system described by Stoker et al.,5 we
could confirm that normal and CAFs differ in their inhibi-

tory effect on tumor cell proliferation. We have also found
that normal fibroblasts from the same patient may differ,
depending on their site of origin.6 Based on this, the RNA
expression profiles of fibroblasts with low and high inhibitory
capacity against an established line of prostatic carcinoma
cells were compared and 1,033 differently expressed genes
were identified.7 A further analysis was made where first
neighbor interactors of the encoded proteins were found.

The Human Protein Atlas is an online database (www.protei-
natlas.com) of immunostained tissue samples. It provides data
on the protein expression patterns of various cell types in both
cancerous and normal tissues.8,9 In contrast to in vitro models,
the Human Protein Atlas provides information about the pro-
tein expression of cells in their true in vivo environment. Using
the Human Protein Atlas, we examined the reactivity of anti-
bodies directed against proteins and their first neighbor interac-
tors found by the RNA profiling. We found 12 previously
unknown signatures preferentially expressed in CAFs.

Material and Methods
Analyzed genes

In a previous study, gene expression was analyzed in two iso-
genic pairs of inhibitory and noninhibitory fibroblasts. The
in vitro pair consisted of inhibitory and less inhibitory sub-
clones of the telomerase immortalized, BjhTERT foreskin
fibroblast line separated by morphology. The ex vivo pair con-
sisted of inhibitory (skin) and noninhibitory (hernia) fibro-
blasts, derived from the same donor.7 Genes consistently
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What’s new?

Cancer-associated fibroblasts (CAFs) in the tumor microenvironment influence the growth and progression of malignant dis-

ease. This study describes 12 previously unknown CAF immunohistochemical signatures, each with a unique expression pat-

tern in the microenvironment of basal cell carcinomas. The signatures correlated with the myofibroblastic phenotype, and the

majority of signatures were expressed at increased levels in different tumor stromata when compared with the normal tissues.

Four signatures were linked to Rho kinase signaling. The findings suggest that the method could be useful for gaining insight

into mechanisms of CAF activation and activity.

Figure 1. ROCK2 expression compared between several normal and tumorous tissues. Left column shows normal and the right column shows

tumor tissues with its associated stroma. Each row represents a different tissue. Images were obtained from the Human Protein Atlas. [Color

figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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upregulated in the inhibitory fibroblasts and genes upregulated
in the noninhibitory fibroblasts were selected. Altogether 1,033
such genes were found with around half in each category.

Searching the UniProt resource for the protein products
of the 1,033 differently expressed genes, we found 762 Uni-
Prot Accession numbers for 759 proteins (including a tripli-
cate annotation) that we used for further analysis.10 To
identify the first neighbor interactors of these proteins, we
used high-throughput and small-scale protein–protein inter-
action data from BioGRID and Human Protein Reference

Database resources, respectively.11,12 In total, 1,892 proteins
were then found as possible direct interactors to the coding
genes of the original, differentially expressed list. The pro-
teins from UniProt resource and the possible direct interac-
tors of these (total, 2,654) were selected for the image
analysis (http://netbiol.elte.hu/karolinska/).

Image analysis

The protein expression of the selected genes was analyzed in
the Human Protein Atlas online database using a tailored

Figure 2. DLG1 expression compared between several normal and tumorous tissues. Left column shows normal and the right column shows

tumor tissues with its associated stroma. Each row represents a different tissue. Images were obtained from the Human Protein Atlas.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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software (Atlas Grabber) developed by our team. The soft-
ware was designed to use a list of our selected proteins and
fetched the corresponding images from the Human Protein
Atlas online database website. By displaying the normal and
matching cancerous tissue images side by side for a particular
protein, it significantly assisted and speeded up the analysis.

We looked for differentially expressed proteins in the
stroma of basal cell carcinoma, compared to normal skin
fibroblasts. Genes strongly expressed in the tumor’s microen-
vironment but not in normal skin were defined as CAF sig-
natures. An additional selection was made based on the
regularity of expression in multiple tumor samples.

The expression of the signatures was also compared in
fibroblasts in the vicinity of squamous cell carcinoma, breast

cancer, colorectal cancer and lung cancer. The percentage of
positive CAF samples was plotted for each specific protein,
for the five different tumor types. To examine the relation-
ship of these signatures to the myofibroblastic phenotype,
their expression was also analyzed in several normal tissue
fibroblast and myofibroblastic cells.

Results
CAF signatures

Out of the original list of 759 Uniprot-identified protein
products of 1,033 differentially expressed genes and their first
neighbors in the human interactome (proteins in total,
2,654), 1,876 had available expression profiles in the Human
Protein Atlas. Twelve proteins were identified out of these

Table 1. List of identified CAF immunohistochemical signatures in basal cell carcinoma

PROTEIN name and
description Antibody Available info

ARHGAP26—Rho GTpase-
activating protein 26

HPA035107 Encodes a GTPase-activating protein that binds to focal adhesion kinases and
mediates the activity of the GTP-binding proteins RhoA and Cdc42.13

ARHGAP31—Rho GTPase-
activating protein 31

HPA036380 Functions as a GTPase-activating protein (GAP) for RAC1 and CDC42. It is required
for cell spreading, polarized lamellipodia formation and cell migration.14,15 The
Rho GTPases control many aspects of cell behavior, such as the organization of
the cytoskeleton, cell migration, cell–cell and cell–matrix adhesion, cell-cycle
progression, gene expression and cell polarity.16–18

DLG1—disks, large
homolog 1

CAB016307 It has been shown to be important in stabilizing Net1, a Rho guanine nucleotide
exchange factor specific for the RhoA subfamily of small G proteins, and therefore
its ability to stimulate RhoA activation in cells.19

ROCK2—Rho-associated,
coiled-coil containing
protein kinase 2

HPA007459 Its activation was shown to elevate tissue stiffness via increased collagen. The same
study also suggested that tumor number growth and progression were increased
by ROCK activation, whereas ROCK blockade was inhibitory.20

EGLN1—EGL nine homolog 1
or hypoxia-inducible
factor prolyl hydroxylase 2

HPA022129 Is a cellular oxygen sensor that catalyzes, under normoxic conditions, the post-
translational formation of 4-hydroxyproline in hypoxia-inducible factor (HIF) a

proteins.21,22

ITCH—ITCHY E3 ubiquitin
protein ligase homolog

HPA021126 It has been shown to facilitate complex formation between TGF-b receptor and
Smad2 and to enhance TGF-b-induced transcription.23 It has also been found to
mediate the ubiquitination and sorting of the G protein-coupled receptor CXCR4.24

RNF19A—ring finger protein
19A or dorfin

CAB011455 is a ubiquitin ligase.25

PKM2—pyruvate kinase,
muscle

CAB019421 Is one of the several Pyruvate kinase isoenzymes functioning as rate-limiting enzyme
during glycolysis. PKM2 is predominantly found in fetal and in tumor cells in
contrast to PKM1 found in normal adult cells.26–28 It has also been shown that
fibroblasts overexpressing PKM1 and PKM2 increase the mitochondrial activity of
adjacent breast cancer cells and promote their growth.29

AZI2—5-azacytidine
induced protein 2

HPA035258 Activates serine/threonine-protein kinase TBK1 and facilitates its oligomerization. It
also enhances the phosphorylation of a NF-jB subunit, promotes TBK1-induced as
well as TNF-a- or PMA-induced activation of NF-jB, and participates in IFN-b
promoter activation via TICAM1.30,31

BHLHE40—basic helix–
loop–helix family,
member e40

HPA028921 It has been shown to be differentially expressed in several malignancies.32,33 It has
also various roles in cell proliferation, apoptosis, differentiation, carcinogenesis,
cellular metabolism, circadian rhythms, immune regulation and functions as a
hypoxia inducible gene as well.34–38

PLOD2—procollagen-lysine,
2-oxoglutarate 5-
dioxygenase 2

CAB025898 Is involved in fibrotic processes and tissue remodeling and catalyzes the hydroxylation
of lysyl residues as a post-translational event in collagen biosynthesis. Hypoxia may
stimulate the expression of PLOD via the HIF-1 pathway.39–41

RAB31—member RAS
oncogene family

HPA019717 Is a small GTP-binding protein of the RAB family, which plays an essential role in
vesicle and granule targeting.
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that were expressed in the CAF of basal cell carcinoma but
not in normal skin fibroblasts (Figs. 1 and 2, Table 1 and
Supporting Information Figs. 1–10). Figure 3 shows the
expression patterns of the signatures in additional tumors
and tissues. It demonstrates that the expression patterns for
each protein varied between the different tumors. For exam-
ple, ARHGAP26 was positive in most of the basal cell carci-
noma tissue samples, but the expression could be seen only
in a few of the squamous cell carcinoma samples. Smooth

muscle alpha actin (ACTA2), the current main myofibroblast
marker, was also included in the figure to show its compari-
son to the novel signatures.

Comparison to the myofibroblastic phenotype

To examine the connection between the CAF phenotype and
the myofibroblastic phenotype, the expression patterns of the
novel signatures were also checked in several myofibroblast-
like cells in normal tissues (Table 2). The findings

Figure 3. Expression of the identified CAF signatures in fibroblasts associated with different tumors. The percentage of positive samples for

each tumor type was measured for each signature and ranked in order of cumulative percentage. Smooth muscle alpha actin (ACTA2), the

currently main CAF marker, was also included in the figure to show its comparison to the novel signatures. This figure shows that some

signatures such as EGLN1 and PLOD2 were similarly expressed, whereas others, such as PKM2 and ARHGAP26, can show considerable

difference between tumor types. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Table 2. Expression of the identified signatures in different normal fibroblasts. The table illustrates the expression patterns of the identified
CAF signatures in different normal tissue fibroblasts. Most of them were expressed (1) in myofibroblastic cells (bone marrow fibroblasts,
mesangial cells and subepithelial small intestinal fibroblasts) but were mostly negative (2) in normal fibroblasts (peritubular fibroblasts,
intra and interlobular breast fibroblasts). 1/2 indicates uncertain results.

Bone marrow Kidney Small intestine villi Breast

Fibroblast
Mesangial

myofibroblast
Peritubular
fibroblast

Subepithelial
fibroblast

Intralobular
fibroblast

Interlobular
fibroblast

ARHGAP26 1 1 2 1 2 2

ARHGAP31 1/2 1 2 1/2 2 2

RNF19A 1 1/2 2 1 2 2

EGLN1 1 1 2 1 2 2

ITCH 1 1/2 2 1 1/2 2

PKM2 2 2 2 1 2 2

AZI2 1 1 2 1 1 2

DLG1 2 1 2 1 2 2

PLOD2 2 1 2 1/2 2 2

BHLHE40 2 2 2 1 2 2

ROCK2 2 2 2 2 2 2

RAB31 2 2 2 1 2 2

C
an

ce
r
C
el
l
B
io
lo
gy

290 Novel signatures

Int. J. Cancer: 133, 286–294 (2013) VC 2013 UICC



demonstrate that most of them were similarly expressed in
myofibroblast-like cells (bone marrow fibroblast, renal mes-
angial cell, subepithelial intestinal villous myofibroblasts),
whereas they were not expressed in normal tissue fibroblasts
(renal peritubular fibroblasts, intra- and interlobular breast
fibroblasts). A notable exception was ROCK2 that seemed to
be expressed only in CAFs.

Discussion
By using RNA profiling data7 and human protein interactome
neighbor analysis combined with the Human Protein Atlas
database, a novel, visually based method was developed to
identify differentially expressed proteins between normal fibro-
blasts and CAFs (Figs. 1 and 2, Supporting Information Figs.
1–10). The method resulted in the identification of 12 such
proteins (Table 1). These can provide new biomarkers for im-
munohistochemical analysis of tumor stromata and may also
offer insights into the pathways that are active in the tumor
microenvironment. As the method includes the analysis of real
tumor samples, the expression patterns identified are in the

context of their true in vivo settings. Several of the identified
signatures can also be expressed in cells of epithelial origin
(Figs. 1 and 2; Supporting Information Figs. 1–9). This is, how-
ever, not directly relevant for the work that focuses on the
expression patterns in fibroblasts alone.

Four of the listed genes, ARHGAP26, ARHGAP31, DLG1
and ROCK2, are linked to Rho kinase signaling (Table 1).
This pathway is believed to be responsible for regulating actin
cytoskeleton, cell adhesion and cell migration and is therefore
also partially responsible for the myofibroblastic phenotype
seen in CAFs (Table 2). This pathway also includes alpha
smooth muscle actin, generally used as a CAF marker.42 Rho
kinase signaling has been linked to increased tissue stiffness,
which in turn significantly contributes to tumor cell survival,
proliferation and progression.43

Analysis of the interaction network neighborhood of the pro-
posed CAF signatures (Fig. 4) showed a highly connected pro-
tein network. However, none of the CAF signatures is directly
connected to each other. Interestingly, the CAF signatures and
their first neighbors form denser components (i.e., protein mod-

Figure 4. The interaction network neighborhood of the identified CAF signatures. This figure shows the protein–protein interaction subnet-

work of the identified CAF signatures (highlighted with dark blue) and their first neighbors. The interactions of the CAF signatures are shown

with blue edges and other interactions with gray edges. Those neighbors whose transcripts were found consistently upregulated in inhibi-

tory or in noninhibitory fibroblasts are marked with red and green rectangles, respectively. Those proteins that are both neighbors of these

differentially expressed proteins and the CAF signatures are marked with gray circles, whereas those proteins that are only the neighbors of

the CAF signatures are marked with light brown circles. Note that PLOD2 has been identified as a CAF signature without any interactions

but upregulated in noninhibitory fibroblasts, whereas ARHGAP26, which was upregulated in inhibitory fibroblasts, was also found as first

neighbor of other differentially expressed proteins, and was also identified as a CAF signature. The network has been functionally analyzed

based on Gene Ontology Biological Processes. The characteristic cellular functions are shown for each protein group. Note that the CAF sig-

nature RAB31 has no connection to the network. For details, see the main text. This figure was created with Cytoscape44 using a spring-em-

bedded network layout followed by manual adjustment. The functional analysis was carried out with GOTermFinder.45 [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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ules or groups). Functional analyzes of these groups showed
three major processes in the network: (i) Rho- and GTPase-
related processes, (ii) Apoptosis, (iii) Cytoskeleton and or-
ganelle organization. In addition, many proteins have multi-
ple functions; thus, they are localized in the overlaps of the
protein groups. Note the slight overlap between the Rho-
and GTPase-related and the Apoptosis groups. The Apopto-
sis group, formed by 26 proteins, is special as it is the only
group that does not contain any CAF signature, but mem-
bers of this group are highly connected to the CAF signa-
tures and other CAF-neighbor proteins.

Conclusions
In conclusion, the novel method to compare Human Protein
Atlas Images employed here proved to be useful in identify-
ing 12 genes as novel signatures of CAFs. This type of analy-
sis can also prove to be useful to compare other ex vivo,
isolated system findings about tumor–host interactions to
real in vivo expression patterns.
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