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A unified data representation 
theory for network visualization, 
ordering and coarse-graining
István A. Kovács1,2,3, Réka Mizsei4 & Péter Csermely5

Representation of large data sets became a key question of many scientific disciplines in the 
last decade. Several approaches for network visualization, data ordering and coarse-graining 
accomplished this goal. However, there was no underlying theoretical framework linking these 
problems. Here we show an elegant, information theoretic data representation approach as 
a unified solution of network visualization, data ordering and coarse-graining. The optimal 
representation is the hardest to distinguish from the original data matrix, measured by the 
relative entropy. The representation of network nodes as probability distributions provides an 
efficient visualization method and, in one dimension, an ordering of network nodes and edges. 
Coarse-grained representations of the input network enable both efficient data compression and 
hierarchical visualization to achieve high quality representations of larger data sets. Our unified 
data representation theory will help the analysis of extensive data sets, by revealing the large-scale 
structure of complex networks in a comprehensible form.

Complex network1,2 representations are widely used in physical, biological and social systems, and 
are usually given by huge data matrices. Network data size grew to the extent, which is too large for 
direct comprehension and requires carefully chosen representations. One option to gain insight into 
the structure of complex systems is to order the matrix elements to reveal the concealed patterns, such 
as degree-correlations3,4 or community structure5–11. Currently, there is a diversity of matrix ordering 
schemes of different backgrounds, such as graph theoretic methods12, sparse matrix techniques13 and 
spectral decomposition algorithms14. Coarse-graining or renormalization of networks15–20 also gained sig-
nificant attention recently as an efficient tool to zoom out from the network, by averaging out short-scale 
details to reduce the size of the network to a tolerable extent and reveal the large-scale patterns. A variety 
of heuristic coarse-graining techniques – also known as multi-scale approaches – emerged, leading to 
significant advances of network-related optimization problems21,22 and the understanding of network 
structure19,20,23. As we discuss in the Supplementary Information in more details, coarse-graining is also 
closely related to some block-models useful for clustering and benchmark graph generation24–26.

The most essential tool of network comprehension is a faithful visualization of the network27. 
Preceding more elaborate quantitative studies, it is capable of yielding an intuitive, direct qualitative 
understanding of complex systems. Although being of a primary importance, there is no general theory 
for network layout, leading to a multitude of graph drawing techniques. Among these, force-directed28 
methods are probably the most popular visualization tools, which rely on physical metaphors. Graph 
layout aims to produce aesthetically appealing outputs, with many subjective aims to quantify, such as 
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minimal overlaps between not related parts (e.g. minimal edge crossings in d =  2), while preserving the 
symmetries of the network. Altogether, the field of graph drawing became a meeting point of art, physics 
and computer science29.

Since the known approaches for the above problems generally lead to computationally expensive 
NP-hard problems30, the practical implementations were necessarily restricted to advanced approxima-
tive heuristic algorithms. Moreover, there was no successful attempt to incorporate network visualiza-
tion, data ordering and coarse-graining into a common theoretical framework. Since information theory 
provides ideal tools to quantify the hidden structure in probabilistic data31,32, its application to complex 
networks25,26,33–37 is a highly promising field. In this paper, our primary goal is to show an elegant, infor-
mation theoretic representation theory for the unified solution of network visualization, data ordering 
and coarse-graining, establishing a common ground for the first time for these separated fields.

Usually, in graph theory, the complex system is at the level of abstraction, where each node is a dimen-
sionless object, connected by lines representing their relations, given by the input data. Instead, we study 
the case in which both the input matrix and the approximative representation is given in the form of 
a probability distribution. This is the routinely considered case of edge weights reflecting the existence, 
frequency or strength of the interaction, such as in social and technological networks of communication, 
collaboration and traveling or in biological networks of interacting molecules or species. As discussed in 
details in the Supplementary Information, the probabilistic framework has long traditions in the theory 
of complex networks, including general random graph models, all Bayesian methods, community detec-
tion benchmarks24, block-models25,26 and graphons38.

The major tenet of our unified framework is that the best representation is selected by the criteria, that 
it is the hardest to be distinguished from the input data. In information theory this is readily obtained by 
minimizing the relative entropy – also known as the Kullback-Leibler divergence39 – as a quality func-
tion. In the following we show that the visualization, ordering and coarse-graining of networks are inti-
mately related to each other, being organic parts of a straightforward, unified representation theory. We 
also show that in some special cases our unified framework becomes identical with some of the known 
state-of-the-art solutions for both visualization40–42 and coarse-graining25,26, obtained independently in 
the literature.

Results
General network representation theory. For simplicity, here we consider a symmetric adjacency 
matrix, A, having probabilistic entries aij ≥  0 and we try to find the optimal representation in terms of 
another matrix, B, having the same size. For more general inputs, such as hypergraphs given by an H 
incidence matrix, see the Methods section. The intuitive idea behind our framework is that we try to find 
the representation which is hardest to be distinguished from the input matrix. Within the frames of 
information theory, there is a natural way to quantify the closeness or quality of the representation, given 
by the relative entropy. The relative entropy, ( )D A B , measures the extra description length, when B is 
used to encode the data described by the original matrix, A, expressed by
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where = ∑⁎⁎a aij ij and = ∑⁎⁎b bij ij ensure the proper normalizations of the probability distributions. 
As a shorthand notation here and in the following an asterisk indicates in index, for which the summa-
tion was carried out, as in the cases of = ∑⁎a ai j ij and = ∑⁎a aj i ij. Although ( )D A B  is not a metric 
and not symmetric in A and B, it is an appropriate and widely applied measure of statistical remoteness43, 
quantifying the distinguishability of B form A. The highest quality representation is achieved, when the 
relative entropy approaches 0, and our goal is to obtain a B* representation satisfying

= ( ). ( )
⁎B D A Bargmin 2B

Although ( ) ≥D A B 0 can be in principle arbitrarily large, there is always a trivial upper bound 
available by the uncorrelated, product state representation, B0, given by the matrix elements = ⁎ ⁎

⁎⁎
b a aij a i j

0 1 . 
For an illustration see Fig. 1a. It follows simply from the definition of the S(A), total information content 
and I(A), mutual information, given in the Methods section, that ≡ ( ) = ( ) ≤ ( )D D A B I A S A0

0 . 
Consequently, the optimized value of ( ) ≤ ( )⁎D A B D A B0  can be always normalized with I(A), or 
alternatively as

η ≡ ( )/ ( ) ≤ . ( )⁎D A B S A 1 3

Here η is the ratio of the needed extra description length to the optimal description length of the system. 
In the following applications we use η to compare the optimality of the found representations. As an 
important property, the optimization of relative entropy is local in the sense, that the global optimum of a 
network comprising independent subnetworks is also locally optimal for each subnetwork. The finiteness 
of D0 also ensures, that if i and j are connected in the original network (aij >  0), then they are guaranteed 
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to be connected in a meaningful representation as well, enforcing bij >  0, otherwise D would diverge. In 
the opposite case, when we have a connection in the representation, without a corresponding edge in 
the original graph (bij >  0 while aij =  0), bij does not appear directly in D, only globally, as a part of the 
b** normalization. This density-preserving property leads to a significant computational improvement for 
sparse networks, since there is no need to build a denser representation matrix, than the input matrix if 
we keep track of the b** normalization. Nevertheless, the B matrix of the optimal representation (where 
D is small) is close to A, since due to Pinsker's inequality the total variation of the normalized distribu-
tions is bounded by D44
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Thus, in the optimal representation of a network all the connected network elements are connected, 
while having only a strongly suppressed amount of false positive connections. Here we note, that our 
representation theory can be straightforwardly extended for input networks given by an H incidence 
matrix instead of an adjacency matrix, for details of this case see the Methods section.

Network visualization and data ordering. Since force-directed layout schemes28 have an energy 
or quality function, optimized by efficient techniques borrowed from many-body physics45 and com-
puter science46, graph layout could be in principle serve as a quantitative tool. However some of, these  
popular approaches inherently struggle with an information shortage problem, since the edge weights 
only provide half the needed data to initialize these techniques. For instance, for the initialization of the 
widely applied Fruchterman-Reingold47 (or for the Kamada-Kawai48) method we need to set both the 
strength of an attractive force (optimal distance) and a repulsive force (spring constant) between the 
nodes in order to have a balanced system. Due to the lack of sufficient information, such graph layout 
techniques become somewhat ill-defined and additional subjective considerations are needed to double 
the information encoded in the input data, traditionally by a nonlinear transformation of the attractive 
force parameters onto the parameters of the repulsive force47. Global optimization techniques, such as 
information theoretic methods40–42,49 can, in principle, solve this problem by deriving the needed forces 
from one single information theoretic quality function.

In strong contrast to usual graph layout schemes, where the nodes are represented by points (without 
spatial extension) in a d-dimensional background space, connected by (straight, curved or more elabo-
rated) lines, in our approach network nodes are extended objects, namely probability distributions (ρ(x)) 
over the background space. The d-dimensional background space is parametrized by the d-dimensional 
coordinate vector, x. Importantly, in our representation the shape of nodes encodes just that additional 
set of information, which has been lost and then arbitrarily re-introduced in the above mentioned 
force-directed visualization methods. In the following we consider the simple case of Gaussian distribu-
tions – having a width of σ, and norm ∫ ρ= ( )h x xd d , see Eq. (6) of the Methods section –, but we have 
also tested the non-differentiable case of a homogeneous distribution in a spherical region of radius σ 

Figure 1. Illustration of our data representation framework. (a) For a given A input matrix, our goal is to 
find the closest B representation, measured by the ( )D A B  Kullback-Leibler divergence. The trivial 
representation, B0, is always at a finite ( )D A B0  value, limiting the search space. (b) In the data 
representation example of network visualization, we assign a distribution function to each network node, 
from which edge weights (B) are calculated based on the overlaps of the distributions. The best layout is 
given by the representation, which minimizes the ( )D A B  description length.
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leading to similar results. For a given graphical representation the bij edge weights are defined as the 
overlaps of the distributions ρi and ρj, given in the Methods section. For a schematic illustration see 
Fig. 1b.

The trivial data representation of B0 can be obtained by an initialization, where all the nodes are at 
the same position, with the same distribution function (apart from a varying hi ∝  ai* normalization to 
ensure the proper statistical weight of the nodes). This way, initially D0 =  I(A) is the mutual information 
of the input matrix, irrespectively from the chosen distribution function. The numerical optimization can 
be straightforwardly carried out by a fast and inefficient greedy optimization or a relatively slow, but 
more efficient simulated annealing scheme starting with an initialization of B0. As a reasonable compro-
mise, in the differentiable case of Gaussian distributions we use a Newton-Raphson iteration as in the 
Kamada-Kawai method48 (for details see the Supplementary Information), having a run-time of ( )N 2  
for N nodes. Here we note, that similarly to the related t-SNE method41,50, discussed in the Supplementary 
Information, the optimization can be in principle carried out in ( )N Nlog  time by applying the 
Barnes-Hut approximation45. 

Independently from the chosen optimization protocol, the finiteness of D0 ensures that the connected 
nodes overlap in the layout as well, even for distributions having a finite support. Moreover, independent 
parts of the network (nodes or sets of nodes without connections between them) tend to be apart from 
each other in the layout. The density-preserving property of the representation leads to the fact, that even 
if all the nodes overlap with all other nodes in the layout, the B matrix can be kept exactly as sparse as the 
A matrix, while keeping track only of the sum of the b** normalization including the rest of the potential 
bij matrix elements. Additionally, if two rows (and columns) of the input matrix are proportional to each 
other, then it is optimal to represent them with the same distribution function in the layout, as though 
the two rows were merged together.  

In the differentiable case, e.g. with Gaussian distributions, our visualization method can be conven-
iently interpreted as a force-directed method. If the normalized overlap, bij/b**, is smaller at a given edge 
than the normalized edge weight, aij/a**, then it leads to an attractive force, while the opposite case 
induces a repulsive force. For details see the Supplementary Information. For Gaussian distributions all 
nodes overlap in the representations, leading typically to D >  0 in the optimal representation. However, 
for distributions with a finite support, such as the above mentioned homogeneous spheres, perfect lay-
outs with D =  0 can be easily achieved even for sparse graphs. In d =  2 dimensions this concept is rem-
iniscent to the celebrated concept of planarity51. However, our concept can be applied in any dimensions. 
Furthermore, it goes much beyond planarity, since any network of ≡ ( ) =D I A 00  (e.g. a fully connected 
graph) is perfectly represented in any dimensions by B0, that is by simply putting all the nodes at the 
same position.

Our method is illustrated in Fig. 2. on the Zachary karate club network52, which became a cornerstone 
of graph algorithm testing. It is a weighted social network of friendships between N0 =  34 members of 
a karate club at a US university, which fell apart after a debate into two communities. While usually the 
size of the nodes can be chosen arbitrarily, e.g. to illustrate their degree or other relevant characteristics, 
here the size of the nodes is part of the visualization optimization by reflecting the width of the distri-
bution, indicating relevant information about the layout itself. In fact, the size of a node represents the 
uncertainty of its position, serving also as a readily available local quality indicator. For illustration of 
the applicability of our network visualization method to larger collaboration53 and information sharing54 
networks, having more than 10,000 nodes, see the Supplementary Information.

Our network layout technique works in any dimensions, as illustrated in d =  1, 2 and 3 in Fig. 2. In 
each case the communities are clearly recovered and, as expected, the quality of layout becomes better 
(indicated by a decreasing η value) as the dimensionality of the embedding space increases. Nevertheless, 
the one dimensional case deserves special attention, since it serves as an ordering of the elements as well 
(after resolving possible degenerations with small perturbations), as illustrated in Fig. 1e.

Since ( ) = ( , ) − ( )D A B H A B S A , H(A, B) is the (unnormalized) cross-entropy, we can equiva-
lently minimize the cross-entropy for B. For a comparison to the known cross-entropy methods55–57 see 
the Supplementary Information. However, as a consequence, the visualization and ordering is perfectly 
robust against noise in the input matrix elements. This means, that even if the input A matrix is just the 
average of a matrix ensemble, where the aij elements have an (arbitrarily) broad distribution, the optimal 
representation is the same as it were by optimizing for the whole ensemble simultaneously. This extreme 
robustness follows straightforwardly from the linearity of the H(A, B) cross-entropy in the aij matrix 
elements. Note, however, that the optimal value of the ( )⁎D A B  distinguishability is generally shifted by 
the noise.

When applying a local scheme for the optimization of the representations, we generally run into 
local minima, in which the layout can not be improved by single node updates, since whole parts of 
the network should be updated (rescaled, rotated or moved over each other), instead. Being a general 
difficulty in many optimization problems, it was expected to be insurmountable also in our approach. In 
the following we show, that the relative entropy based coarse-graining scheme – given in the next section 
– can, in practice, efficiently help us trough these difficulties in polynomial time.
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Coarse-graining of networks. In the process of coarse-graining we identify groups or clusters of 
nodes, and try to find the best representation, while averaging out for the details inside the groups. 
Inside a group, the nodes are replaced by their normalized average, while keeping their degrees fixed. As 
the simplest example, the coarse-graining of two rows means, that instead of the original k and l rows, 
we use two new rows, being proportional to each other, while the bk* =  ak* and bl* =  al* probabilities are 
kept fixed
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In other words, we first simply sum up the corresponding rows and obtain a smaller matrix, then 
inflate this fused matrix back to the original size while keeping the statistical weights of the nodes 
(degrees) fixed. For an illustration of the smaller, fused data matrices see the lower panels of Fig. 3a–d. 
For a symmetric adjacency matrix, the coarse-graining step can be also carried out simultaneously and 
identically for the rows and columns, known as a bi-clustering. The optimal bi-clustering is illustrated in 
Fig. 2f for the Zachary karate club network. The heights in the shown dendrogram indicate the D values 
of the representations when the fusion step happens.

For the general, technical formulation of our coarse-graining approach and details of the numerical 
optimization, see the Supplementary Information. As it turns out, for coarse-graining, ( )D A B  is nothing 
but the amount of lost mutual information between the rows and columns of the input matrix. In other 
words, ( )D A B  is the amount of lost structural signal during coarse-graining and finally we arrive at a 
complete loss of structural information, ( ) =D A B D0. Prevailingly, this final state coincides with the 
above proposed initialization step of our network layout approach. As a further connection with the graph 
layout, if two rows (or columns) are proportional to each other, they can be fused together without losing 
any information, since their coarse-graining leads to no change in the Kullback-Leibler divergence, D.

Since it is generally expected to be an NP-hard problem to find the optimal simplified, coarse-grained 
description of a network at a given scale, we have to rely on approximate heuristics having a reasonable 

Figure 2. Illustration of the power of our unified representation theory on the Zachary karate club 
network52. The optimal layout (η =  2.1%, see Eq. (3)) in terms of d =  2 dimensional Gaussians is shown by 
a density plot in (a) and by circles of radiuses σi in (b). (c) the best layout is obtained in d =  3 (η =  1.7%), 
where the radiuses of the spheres are chosen to be proportional to σi. (d) the original data matrix of the 
network with an arbitrary ordering. (e) the d =  1 layout (η =  4.5%) yields an ordering of the original data 
matrix of the network. (f) the optimal coarse-gaining of the data matrix yields a tool to zoom out from the 
network in accordance with the underlying community structure. The colors indicate our results at the level 
of two clusters, being equivalent to the ones given by popular community detection techniques, such as the 
modularity optimization5 or the degree-corrected stochastic block model25. We note, that the coarse-graining 
itself does not yield a unique ordering of the nodes, therefore an arbitrarily chosen compatible ordering is 
shown in this panel.
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run-time. In the following we use a local coarse-graining approach, where in each step a pair of rows 
(and columns) is replaced by coarse-grained ones, giving the best approximative new network in terms 
of the obtained pairwise D-value. This way the optimization can be generally carried out in ( )N 3  time 
for N nodes. As a common practice, for larger networks we could use the approximation of fusing 
together a finite amount (eg. 1%) of the nodes in each step instead of a single pair, leading to an improved 
( )N Nlog2  run-time.

As illustrated in Fig. 2f the coarse-graining process creates a hierarchical dendrogram in a bottom-up 
way, representing the structure of the network at all scales. Here we note, that a direct optimization is 
also possible for our quality function at a fixed number of groups, creating a clustering. As described 
in the Supplementary Information in details, our coarse-graining scheme comprises also the case of 
the overlapping clustering, since it is straightforward to assign a given node to multiple groups as well. 
As noted there, when considering non-overlapping partitionings with a given number of clusters, our 
method gives back the degree-corrected stochastic block-model of Karrer and Newman25 due to the 
degree-preservation. Consequently, our coarse-graining approach can be viewed as an overlapping and 
hierarchical reformulation and generalization of this successful state-of-the-art technique.

Hierarchical layout. Although the introduced coarse-graining scheme may be of significant interest 
whenever probabilistic matrices appear, here we focus on its application for network layout, to obtain 
a hierarchical visualization58–63. Our bottom-up coarse-graining results can be readily incorporated into 
the network layout scheme in a top-down way by initially starting with one node (comprising the whole 
system), and successively undoing the fusion steps until the original system is recovered. Between each 
such extension step the layout can be optimized as usual.

We have found, that this hierarchical layout scheme produces significantly improved layouts – in 
terms of the final D value – compared to a local optimization, such as a simple simulated annealing 
or Newton-Raphson iteration. By incorporating the coarse-graining in a top-down approach, we first 
arrange the position of the large-scale parts of the network, and refine the picture in later steps only. 
The refinement steps happen, when the position and extension of the large-scale parts have already been 
sufficiently optimized. After such a refinement step, the nodes – moved together so far – are treated 
separately. At a given scale (having N ≤  N0 nodes), the D value of the coarse-graining provides a lower 
bound for the D value of the obtainable layout. Our hierarchical visualization approach is illustrated in 
Fig. 3. with snapshots of the layout and the coarse-grained representation matrices of the Zachary karate 
club network52 at N =  5, 15, 25 and 34. As an illustration on a larger and more challenging network, 
in Fig.  4. we show the result of the hierarchical visualization on the giant component of the weighted 
human diseasome network64. In this network we have N0 =  516 nodes, representing diseases, connected 
by mutually associated genes. The colors indicate the known disease groups, which are found to be well 
colocalized in the visualization.

Figure 3. Illustration of our hierarchical visualization technique on the Zachary karate club network52. 
In our hierarchical visualization technique the coarse-graining procedure guides the optimization for the 
layout in a top-down way. As the N number of nodes increases, the relative entropy of both the coarse-
grained description (red, ○) and the layout (blue, ●) decreases. The panels (a–d) show snapshots of the 
optimal layout and the corresponding coarse-grained input matrix at the level of N =  5, 15, 25 and 34 nodes, 
respectively. For simplicity, here the hi normalization of each distribution is kept fixed to be ∝  ai* during the 
process, leading finally to η =  4.4%.
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Discussion
In this paper, we have introduced a unified, information theoretic solution for the long-standing prob-
lems of matrix ordering, network visualization and data coarse-graining. While establishing a connection 
between these separated fields for the first time, our unified framework also incorporates some of the 
known state-of-the art efficient techniques as special cases. In our framework, the steps of the applied 
algorithms were derived in an ab inito way from the same first principles, in strong contrast to the large 
variety of existing algorithms, lacking such an underlying theory, providing also a clear interpretation 
of the obtained results.

After establishing the general representation theory, in our paper we first demonstrated that the min-
imization of relative information yields a novel visualization technique, while representing the A input 
matrix by the B co-occurrence matrix of extended distributions, embedded in a d-dimensional space. As 
another application of the same approach, we obtained a hierarchical coarse-graining scheme, when the 
input matrix is represented by its subsequently coarse-grained versions. Since these applications are two 
sides of the same representation theory, they turned out to be superbly compatible, leading to an even 
more powerful hierarchical visualization technique, illustrated on the real-world example of the human 
diseasome network. Although we have focused on the visualization in d-dimensional flat, continuous 
space, the representation theory can be applied more generally, incorporating also the case of curved 
or discrete embedding spaces. As a possible future application, we mention the optimal embedding of a 
(sub)graph into another graph.

We have also shown that our relative entropy-based visualization with e.g. Gaussian node distri-
butions can be naturally interpreted as a force-directed method. Traditional force directed methods 
prompted huge efforts on the computational side to achieve scalable algorithms applicable for the large 
data sets in real life. Here we can not and do not wish to compete with such advanced techniques, but 
we believe that our approach can be a good starting point for further scalable implementations. As a first 
step towards this goal, we have outlined the possible future directions of computational improvement. 
Moreover, in the Supplementary Information we illustrated the applicability of our approach on larger 
scale networks as well. We have also demonstrated, that network visualization is already interesting 
in one dimension yielding an ordering for the elements of the network. Our efficient coarse-graining 
scheme can also serve as an unbiased, resolution-limit-free, starting point for the infamously challenging 
problem of community detection by selecting the best cut of the dendrogram based on appropriately 
chosen criteria.

Our data representation framework has a broad applicability, starting form either the node-node or 
edge-edge adjacency matrices or the edge-node incidence matrix of weighted networks, incorporating 
also the cases of bipartite graphs and hypergraphs. We believe, that our unified representation theory is 
a powerful tool to gain a deeper understanding of the huge data matrices in science, beyond the limits 
of existing heuristic algorithms. Since in this paper our primary intention was merely to demonstrate 
a proof of concept study of our theoretical framework, more detailed analyses of interesting complex 
networks will be the subject of forthcoming articles.

Figure 4. Visualization of the human diseasome. The best obtained layout (η =  3.1%) by our hierarchical 
visualization technique of the human diseasome is shown by circles of radiuses σi in (a) and by a traditional 
graph in (b). The nodes represent diseases, colored according to known disease categories64, while the σi 
width of the distributions in (a) indicates the uncertainty of the positions. In the numerical optimization for 
this network we primarily focused on the positioning of the nodes, thus the optimization for the widths and 
normalizations was only turned on as a fine-tuning after an initial layout was obtained.
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Methods
We use the most general form of the input matrices, without assuming their normalization. In accord-
ance, there is no need to normalize the information theoretic measures over , such as the 

( )( ) ≡ − ∑ / ⁎⁎S A a a alnij ij ij  information content or the mutual information between the rows and col-
umns of A given by ( ) = ∑ ⁎⁎

⁎ ⁎
I A a lnij ij

a a

a a
ij

i j
, where = ∑⁎a ai j ij and = ∑⁎a aj i ij. If we start with the H 

edge-node co-occurrence (incidence) matrix instead, suited to describe hypergraphs as well, then 
A ~ HT H is simply given by the elements, = ∑

⁎⁎
a h hij h k ki kj

1 , where = ∑⁎⁎h hij ij. This way we generally 
have non-zero diagonal entries (aii). See the Supplementary Information for a discussion on the case with 
strictly zero diagonals.

The parametrization of the Gaussian distributions used in the visualization is the following in 
d-dimensions
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For a given graphical representation the B co-occurrence matrix is built up from the overlaps of the 
distributions ρi and ρj – analogously to the construction of A from H – as ∫ ρ ρ= ( ) ( )b x x xdij R

d
i j

1 , where 

∫ ρ= ∑ ( )R x xdk
d

k  is an (irrelevant) global normalization factor. Although our network layout works 
only for symmetric adjacency matrices, the ordering can be extended for hypergraphs with asymmetric 
H matrices as well, since the orderings of the two adjacency matrices H HT and HT H readily yield order-
ings for both the rows and columns of the matrix, H.

For details of the numerical optimization for visualization and coarse-graining see the Supplementary 
Information. The codes written in C+ +  using OpenGL are freely available - as command-line programs 
- upon request.
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A. Coarse-graining of the rows

In the following we summarize the numerical details of coarse-graining the rows of a matrix with N r rows and Nc
columns. For each pair of rows the � difference of the D relative entropy value for the fusion step could be calculated
independently from the other pairs. Thus after a fusion step only the � values of the new row with the rest of the rows
were needed to be calculated in O(Nc) time. Since in each step the pair with the lowest � value was fused, we needed
to select the lowest value before each step, which could be conveniently done with a binary heap data structure in
O(ln N r ) time. Altogether we finished in O

�
N 2

r Nc)
�

time.

B. Coarse-graining of both the rows and columns

In the following we overview the numerical details of the simultaneous coarse-graining of both the rows and columns
of a symmetric matrix with N rows and columns. In this case the fusion of two node pairs is generally not independent,
thus besides calculating the � values of the new row, all the other values may be needed to be updated. Fortunately,
this can be done in constant time between rows i and j . After the fusion of rows a and b, � ij must be increased by
2∆ij , where

∆ij = �wia ln wia � wja ln wja � wib ln wib � wjb ln wjb

+(wia + wja ) ln(wia + wja ) + (wib + wjb ) ln(wib + wjb )

+(wia + wib ) ln(wia + wib ) + (wja + wjb ) ln(wja + wjb )

�(wia + wja + wib + wjb ) ln(wia + wja + wib + wjb ) :

(35)

Altogether the whole process took O(N 3) time.

C. Basic notations for coarse-graining

With the notations mij =
P

k uik akj , nij =
P

k aik vjk and wij =
P

kl uik akl vjl the relevant entropy measures can
be expressed as follows.

S(R) = �
X

i

ai � ln
ai �

a��
; S(C) = �

X

i

a� i ln
a� i

a��
(36)

S(r ) = �
X

i

mi � ln
mi �

a��
; S(c) = �

X

i

n� i ln
n� i

a��
(37)

S(r; C ) = �
X

ij

mij ln
mij

a��
; S(R; c) = �

X

ij

nij ln
nij

a��
(38)

S(R; C) = �
X

ij

aij ln
aij

a��
; S(r; c) = �

X

ij

wij ln
wij

a��
(39)

From these we could deduce the used measures of mutual information for any X and Y as I (X; Y ) = S(X ) + S(Y )�
S(X; Y ).
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